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An equation is derived for yield per recruit of a fishery (or other exploited animal 
population) as a function of fishing intensity and age of first capture. The equation has 
the advantage that it does Dot require explicit estimates of natural mortality or individual' 
growth rate parameters. Linear length growth is assumed until maximum size is reached, 
and mortality parameters are expressed relative to growth rate. Mortality parameters are 
estimated from average length samples of separate populations experiencing different fishing 
efforts in the same fishery. The equation may be used to compare existing fishing efforts 
and age of first capture with optimal values. Samples of the catfish Bagrus docmac from 
Lake Victoria (East Africa) are used to illustrate the method. 

Key words: yield equation, Beverton-Holt, fish lengths, Lake Victoria, Bagrus docmac, 
fishing effort, recruitment age 

MARTEN, G. G. 1978. Calculating mortality rates and optimum yields from length samples. 
J. Fish. Res. Board Can. 3S: 197-201. 

L'auteur derive une equation decrivant Ie recrutement par recrue dans une pecherie 
(ou dans toute autre population animale exploitee) comme fonction de l'intensite de peche 
et de l'age de la premiere capture. L'equation a I'avantage de ne pas requerir d'estimes 
formels de la mortalite naturelle oi de parametres de croissance individuelle. On suppose 
que la croissance en longueur est lineaire jusqu'a ce que la taille maximale soit atteinte et 
on exprime les parametres de mortalite par rapport au rythme de croissance. Les para­
metres de mortalite soot estimes a partir de la longueur moyenne d'echantillons de 
populations distinctes soumises ades efforts de peche differents au·sein d'une meme pecherie. 
L'equation peut servir a comparer des efforts de peche et l'ige de premiere capture avec 
des valeurs optimales. Pour illustrer la methode, l'auteur se sert d'echantillons du sHure 
Bagrus docmac captures dans Ie lac Victoria (Afrique orientale). 
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THE equation of Beverton and Holt (1957) has become The method described below is designed to calculate 
standard in recent years for calculating average 'weight weight yield per recruit on the basis of only average 
yield per recruit as a function of fishing effort and the age length without measuring Z, K, F, or M directly. This is 
of first capture (critical age). However, a limitation of achieved on the basis of the average lengths associated 
this equation has been that it requires precise values for with at least two different levels of fishing effort. It has 
growth and mortality parameters, values that are difficult the advantage that the effects of fishing effort and critical 
to measure. Ssentongo and Larkin (1973) made an im­ age upon yield can be calculated to a first approximation 
portant step toward easier measurement of these param­ on the basis of a few weeks of sampling. 
eters by estimating the ratio of mortality rate to growth 
rate (ZIK) on the basis of average length in a population Yield Equation 
sample. Assume a recruitment of R individuals per unit time. 

If K and fishing mortality (F) can be measured by some They experience a constant natural mortality (M)
other means~ the knowledge of Z /K can be used to throughout the period they are vulnerable to 'the fishery.
calculate natural mortality (M), and the resulting values as well as a constant fishing mortality (F) starting at 
of M, K, and F used in the Beverton-Holt equation. A critical age Ie. Mortality is the same for all fish older 
similar procedure could be followed if Z and F were than Ie, regardless Qf age.
measured by other means. The approach of Ssentongo The number of the original R individuals reaching
and Larkin has the advantage that it is not necessary to age Ie is 
measure Z and K directly, but it has the limitation that 
it is necessary to measure at least one of them by some (1) 
other means. 

The number of individuals at any age I after Ie is 
Printed in Canada (14830) 
Imprime au Canada (14830) (2) N(t) = Rce-z<t-tc) t 
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where Z = M + F is the total nlortality. Substituting 
(1) in (2). 

(3) 

The number of fish dying at each age I is 

= -liN ~ RZer:/,-~r(4) Z(t) tit ,4'. T .... 

of which a fraction M /Z is due to natural mortality and 
a fraction F /Z to fishing mortality. The number of fish 
captured. as a function of age. is therefore 

(5) F(t) = FReFtc-ZI. 

The tOUll yield from a. cohort during its lifetime is the 
integral of all fish c~lptured times their weight 

(6) y = r'" [F(I): W(t)]dl.Jlc 

As an approximation to the von Bertalantfy curve 
often used for fish. length growth is assumed linear until 
a maximum length of Lt;J;. All fish in the population are 
assumed to reach the same maximum length. and weight 
is assumed proportional to the cube of length. 

(7) L(t) = Loot when O~/~1. 

L(i) = Lr.x;. when I > I. 

(8) W(/) = W =ot 3 \vhen O~l~ I. 

W(t)=Wa: when t > I. 

Note th~·t a unit of time is that required to grow from a 
hypothetical size 0 to maximum length (/..r). The mortal­
ity rates F, M,. and Z are now instantaneous rates with 
respect to this special time scale. The size at age 0 is 
hypothetical because it represents a linear extrapolation 
to I = O. which does not nece~~arily correspond to the 
actual birth of the fish. It does not matter whether length 
growth conforms to equation (7) below age Ie. as long as 
it is approximately linear above f r • 

Although the abrupt cessation of growth postulated by 
equations (7) and (8) may be a departure from reality. the 
consequent error should be reasonably small, particularly 
at high natural mortalities where few fish reach maturity. 
Furthermore, the precise growth pattern of most species 
is not known sufficiently well in practice to justify a more 
elaborate assumption. 

Substituting (5) and (8) in (6), 

(9) Y = r I [FReFle-Zlt3Wco]dt
J~ . 

+1""[FReFle-Z'Wco]dt. 

The two terms are necessary because of the discontinuity 
in growth. The first term corresponds to the yield of fish 
still growing and the ~econd term to the yield of full­
grown fish. 

Evaluating the integrals in (9) and expressing Z as 
M+F, 

"{his is the-yieJp equation. R~ ij~':f)' nnd ~1~are,c~o.nstants in 
fhe·equatI6i{;··t~ a~nd 'rare aeciSion~vltria1.iles·:··' 

Characteristics of Yield Equation 

Figure 1 shows yield as ,a Junction of. the decision 
variables: critical age (Ie) and tishing mortality rate (F). 
Yield is expressed as a function of the highest possible 
yield. R ~Y ...c. which is the yield to be attained if the fish 
are able to grow to full size without any mortality and 
then experience only fishing mortality. The critical age 
shown in Fig. 1 does not extend past 1 because the 
optimaI criticaI age is always t or less. Furthermore, since 
all fish of age 1 and older are the same size, there is no 
way in practice to make the critical age > 1 on the basis 
of mesh sizes. 

Figure lA shows yield per recruit when M = O. Al­
though natural mortality would never be 0 in reality, Fig. 
lA is of interest as a theoretical limit to the yield equation. 
Yield reacnes the maximum possible value of unity if fish­
ing begin~ at full growt~ (Ie ~ 1). Fishing mortality is of 
no consequerice in this ~ situation. Yietd 'is also 'nearly the 
maximum, even though Ie < 1, whenever the fishing 
mortality rate is close tQ O. )'ield:s dec.line c;ot:\tinuously as 
the critical age decreases or the fishing nlortality rate 
increases. 

A yield of unity can never be attained when M is >0. 
In fact. natural death rates place severe restrictions on the 
best yield that can be realized even by adjusting critical 
age and fishing mortality (Fig. 1A and B). For any given 
value of M, the maximum yield is Ic 3e-.1ltc, which occurs 
at Ie = 3/M (subject to the constraint Ie < ~) and F = CX) • 

Therefore, as natural mortality increases, the maximum 
yield decreases and (when M > 3) is found at smaller 
critical ages. 

If the critical age is fixed, the best fishing mortality 
increases as natural mortality increases. (However, the 
yield equation gives only yield per recruit and does not 
take into account the effect of fishing upon recruitment. 
Heavy fishing in conjunction with a high natural mortality, 
though optimal for yield per recruit, may reduce re­
cruitment.) 

The g~neral pattern of the e~ects of critical age and 
fishing mortality on yield (Fig. IB and C) is' the same for 
all natural mortalities >O. Yield is nearly independent of 
the critical age at low fishing mortalities but depends upon 
the critical age at higher fishing mortalities. At critical 
ages greater than the optimal lc, yield incr~ases continu­
ously (but with diminishing returns) as fishing mortality 
increases. However, at critical ages less than the optimal 
Ie, yield is greatest at an intermediate fishing mortality, 
and the be~t fishing mortality rate decreases as Ie de­
creases. 

For example, when M = 1 (Fig. IB), the optimal yield 
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FIG. 1. Isopleths of yield per recruit (Y/ RWoo) as a function of critical age (tc) and fishing 
mortality rate (F). 

of 0.37 occurs at Ie = 1 and F = co • If Ie is forced to be 0, Estimation of Total Mortality 
the best F shifts down to F = 0.83. By comparison, when 
M = 5 (Fig. Ie), the optimal yield is only 0.011 and Natural mortality is the yield equation's key parameter. 
occurs at Ie = 0.6 and F = co. The best F is 1.83 when To estimate natural mortality it is necessary first to 
Ie is forced to be o. '1 estimate total mortality. The total mortality rate of a 

2.0 500 4.0 5.0 

5.0 

Y·O.OO4 

1.0 2.0 5.0 4.00.0 

LO- C
It: 
0 



200 

5 

4.. 

J 

y 

2 

, , 

, , 
, , 

" 

and equation (14a). 

population can be estimated from its average length. 
It is best to include only fish greater than length Lo in 

the estimation procedure if smaller fish are suspected to 
be underrepresented in the sample due to escapement. 
Assuming continuous recruitment and to = Lo/L CD ~ te 
(i.e., all fish in the sample are large enough to be subject 
to the constant fishing mortality F), the probability den­
sity function 'of the population above length Lo is 

(11) pet) = Ze-z~. 

The .aver~g~Je~g!!:tof the popu!.~~!,?n a~oye l~~g~h L9.i~ . 
: "., ...... .'. ~ , .. 

(12) L = 1'" [p(t)L(t)]dt. 
. to 

Substituting (7) and (11) in (12) . 
1 

(13) [= 1 [Ze-Z'tL",,]dt + f"" [Ze-ZILcc]dt. 
to )1 

Evaluating the integrals ill (13) and solving for Z. the 
estimate of total mortality (Z) is 

(14) 
.. L [ ( Lcc - La) ... ]Z = __00_ 1-.- e- LaJ Z. 

L - Lo 
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FIG. 2 Solution to equation (14) for estimating total mortality eZ) using (La) - Lo)/(r - Lo) 

Although equation (14) does not have an explicit solution 
it is easily solved by iteration using La)IL - Lo) as an 
initial guess. Z is within 1% of La) I(L - Lo) when 
Z(La) - Lo)ILa:J > 5. 

The solution to equation (14) can also be obtained 
using Fig. 2. Starting with (L a:J - Lo) I(L - Lo), the 
value of Y is rea~ from Fig. 2 and natural mortality then 
calculated as .. 

L oo(14a) z = y( ).
La;; - Lo 

The time unit for the estimate of total mortalitv is the time 
required to grow from hypothetical size 0 t~ full length 
(L a). For example, if the instantaneous mortality rate is 
2.0/yr and full size is reached at 3.0 yr, Z = 6.0. 

Estimation of Natural Mortality 

To estimate M it is necessary to sample two or more 
populations at different times and lor locations. The 
parameters of individual growth, as well as the natural 
mortalities of the populations, are assumed to be the 
same, but the fishing efforts (j) and consequent average 
lengths must be distinctly different. After estimating total 
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mortality for each population using equation (14), the 
unknown natural mortality (M) and gear efficiency (k) 
can be estimated by fitting the regression equation 

(15) Z = M+kf. 

The Z intercept gives an estimate of M (i.e. the hypo­
thetical mortality when fishing intensity is 0), and the 
slope gives the conver~ion factor between fishing effort 
(j) and fishing mortality (F), F == kf. Confidence limits 
for M and k can be calculated by standard linear re­
gression techniques. 

It may be that natural mortality is influenced by fishing 
and therefore is not the same in all the populations. If so, 
the resulting curvilinear relationship between Z and f can 
be fitted by polynomial regression and M estimated by 
extrapolation to f == o. 

Summary of the Method 

Restating equation (10), the yield equation, in terms 
of k andf, 

(16) Y - RWookf,f"e[e-(JI+iJ)fr(--L + ~ + ~ +__6_)
M + kf (M + kn' (M + kf)' (M + kf)· 

-(JI+tIl( 3 6 6)]
-e (M + k/)' + eM + kn' + eM + kf)4 . 

The method is simple. First, samples of two or more 
populations having approximately the same growth and 
natural mortality parameters but experiencing different 
fishing efforts are taken to estimate the average length of 
each population. Equation (14) is used to estimate the 
total mortality (Z) of each population, and equation (15) 
is then used to estimate natural mortality (M) and the 
gear efficiency coefficient (k). M and k are the two essen­
tial parameters for calculating yield. 

Note that although the parameters Rand Weo must be 
known to calculate the absolute value of yield, they need 
not be known to calculate relative values of yield for 
different values of the decision variables, critical age (Ie) 
and fishing effort (j). Graphs can be prepared of relative 
yield against Ie andf(Fig. 1) and the optimal values of Ie 
and f compared with existing values in the fishery. 

An Example 

Equation (15) can be used to estimate M and k m~st 

effectively when at least one of the locations is heavily 
fished and one lightly fished. The calculations presented 
below are based on bottom-trawl samples of the catfish 
Bagrus docmac from two parts of Lake Victoria, East 
Africa:' (1) the heavily fished Kavirondo Gulf and (2) the 
lightly fished Emin Pasha Gulf. Samples from different 
times of the year were pooled to average out seasonal 
fluctuations in average length. Although this simple 
example is based on only two sample points, serious 
applications of the method should use as many points 
as possible. 

Yields are expressed as Y /RWeo, i.e. as a proportion of 
the maximum yield that would be possible if there were 
no natural mortality. . 

Emin 
Kavirondo Pasha 

Gulf Gulf 

Sample size 3440 74 
Min length used in 

samples (L.) 34.5cm 
Length at maturity (Leo) 85.0em 
Avg length in sample (I) 41.9cm 47.4cm 
Total mortality (Z) esti­

mated from equation (14) 11 .5 6.5 
Fishing effort (f) as nets 

per mile of shoreline 445 112 
Natural mortality (M) 

estimated from equation 
(15) 4.8 

Efficiency coefficient (k)
 
estimated from equation
 
(15) .015 

Because Bagrus is fished by a great variety of nets that 
capture it between a size of 5 em and maturity, Ie is for all 
practical purposes O. Calculating the optimal fishing 
intensity, assuming Ie = 0, 

Emin 
Kavirondo Pasha 

Gulf Gulf 

Present calculated yield 
(Y /RW GO) by equation 
(16) .0023 .0055 

Optimal fishing effort (f) 
by equation (16) 113 

Optimum yield (Y /RWco) 
by equation (16) .0055 

With an estimated natural mortality of 4.8, the best 
yield possible for Bagrus with the present critical age 
(Ie == 0) is only 0.55% of what would be possible if there 
were no natural mortality. Whereas fishing effort in the 
Emin Pasha Gulf is very close to the optimum, fishing 
effort in the Kavirondo Gulf is 4 times the optimum. and 
yield is only 42~, of what it could be. 

Figure 1C (based on M = 5, which is reasonably close 
to the M == 4.8 for Bagrus) gives an idea of the possi­
bilities if critical age could be adjusted. If the critical age 
·can be postponed to 60% of maturity, the maximum is 
double what it is when the critical age is 0 (Fig. 1C). 
Furthermore, maximum yield at Ie == 0.60 occurs at a 
value of F == co, which means that the fishing mortality 
of F == 6.7 in the heavily fished Kavirondo Gulf would 
no longer represent overfishing. 
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APPENDIX: Estimates of total mortality (Z) for major commercial fish  
in Lake Victoria using equation (14) and average lengths 
 
Source:  Marten, G.G. 1976. Mortality rates and optimum yields from average lengths.  
East African Freshwater Fisheries Research Organization Annual Report (1975):22-24. 
 
                                      Location         N            L0                     L∞      Ave (L)      Est (Z)   
                                                            
Tilapia esculenta              EPG          359          22.5           35          28.0           5.4 
Tilapia variabilis                KG            94          19.5           34          23.3           8.7 
Tilapia nilotica                      U          442          39.5           60          47.3           6.9 
Bagrus docmac                   KG        3440          34.5           85          41.9         11.5 
Bagrus docmac                 EPG            74          34.5           85          47.4           6.5 
Clarias mossambicus          KG         227          54.5         110          72.0           6.0 
Protopterus sp.                    KG         217          99.5         160        118.7           7.9 
Haplochromis sp.                KG       4794            4.75         16            7.05         6.9 
Haplochromis sp.                 PV       3072            4.75         16            7.50         5.7 
Schilbe mystus                      KG        258          19.5           35          23.6           8.3 
Synodontis afrofischeri        KG         254            9.25         20          11.13         9.6 
Synodontis victoriae               U         245          13.45         26          15.50       12.7 
Engraulicypris argenteus     KG        569            4.75           9            5.75         8.9 
Engraulicypris argenteus     PV         925            4.75           9            6.05         6.6 
 
KG = Kavirondo Gulf, Kenya (1975) 
PV = Port Victoria, Kenya (1975) 
U = Uyoma, Kenya (1975) 
EPG = Emin Pasha Gulf, Tanzania (1970) 
 
N = Sample size 
L0  = Minimum length (cm) used in the fish sample                    
L∞ = Maximum length (cm) to which the fish can grow 
Ave (L) = Average length (cm) of fish exceeding L0 in the sample 
Est (Z) = Estimated total mortality 
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