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AN OI'TIMIZATION EQUATION FOR PREDATION1 

GERALDG. M A R T E N  
I ~ ~ s i i i ~ i i eo j  Xeso~crce Ecoiosy,  C'rfi\,r,r..tity of B~.iris i~Colrrrnhin, Var~couver ,  B.C., Corzadn 

Ab.c.iracr. A general equation is derived for the quantity of different foods a predator con-
sumes in response to food preference and food abundance. It is supposed the predator ap-
Fortions its efforts among different search modes in order to minimize the discrepancy between 
actual and desired quant~ties of each food consumed. Included are the conflict between quan- 
tity and composition of the diet and the competition betneen feeding and nonfeeding activities. 
The properties of the equation are examined and discussed in light of the literature. 

Predation has been the subject of num:rous the-
oretical and exp-rimental investigr~tlons in recent 
years. This papcr attempts to incorporate some of 
the pzitterns which have emerged into a single. over- 
all equation. The equcition states in con~put:lb!e form 
how the quantities of diirerent foods con~unicd by a 
predator ( o r  herbivore) d2pend upon food abun-
dances and preferences. I t  is intended prini~ri!y as a 
computational tool of general scope which 113nethe-
less approximates reality. 

The equation is b a s d  on the teleological asiertion 
that a predator adjusts its eYorts in obtaining differ- 
ent foods to control its diet within certain practical 
limits. It thereby provides, in addition to a computa- 
tional tool, a working hypothesis fcr studying preda- 
tion from the particular point of view which under- 
lies its derivation-optimal control. 

The objective is to compute feeding rates a? sim-
ply as possible, while retaining such common features 
of predator response to food abundance as ( a )  sat-
uration of a predator's feeding capacity at high food 
abundance: ( b )  shifting proportions of food in the 
diet at different food abundances: ( c )  thresholds of 
food abundance. below which a food is not con-
sunled: ( d )  maintenance of variety in the diet, even 
when a food is superabundant. 

As a computational tool, the equation can contrib- 
ute to the quantitative s t~ ldy  of ecosystems. Only 
when we are explicit about the nature of ecosystem 
transfers like predation can we interpret ecosystem 
experiments without confounding the effects of those 
transfers with properties emerging at the ecosystem 
level. 

If a general predation equation is to be valid, there 
must in fact be some uniformity in nature despite the 
great variety of means organisn~s employ to pursue 
their relatively few kinds of ecological ends. Slobod- 
kin (1965) feared this variety would impede a quan- 
titative ecology, and indeed, even the broad mech-
anisnis which determine the pattern of predator re-
spanse to food abundance seem different in each new 
situation studied. 
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Holling found predator saturation mediated by a 
drop in searching effectiveness due to  time lost pro- 
cessing food in one instance (Holling 1959) and to 
a decline in hunting motivation on filling the g ~ l t  in 
another (Holling 1966) .  Tinbergen ( 1  960)  postu-
lated a "specific search image" to account for  shift- 
ing proportions of food in the diet of forest birds. but 
Royan~a  (1970) felt that a concentration of search- 
ing activity in temporarily profitable microhabitats 
could also account for the same effect. Croze (1970) 
documented experimentally that both kinds of learn- 
ing, for food and for habitat. were present in crows. 

The foundation of the predation eq~lation to be 
presented here is adaptation-the ability of orga-
nisms to change their operating characteristics in 
coping with a fluctuating environment-a fundamen-
tal feature of life which dominates ecological pro-
cesses (Slobodkin 1964).  It  will be assumed that 
predators shift their feeding behavior with changes 
in food abundance. optimizing the q~lantity and com- 
position of their diet. Learning may be involved in 
some instances, built-in mechanisms in others, but 
the equation specifies no such details. There is no 
concern here with what is ultimately being optimized 
(e.g., survival or reproduction); the standards for 
an optimal diet of any particular predator are as-
sumed to be given. 

Search nlodes 

k t  LIS assume that a predator has rn discrete search 
modes. They might, for example, be different micro- 
habitats, searching techniques, or search images. The  
average feeding rate (u, , )  on food k in search mode 
i is 

;.;( t 

uki=.lk u k , i )  ( 1 )  

N,,,x 

where = the effectiveness of finding the kth food 
in the ith search mode 

N ,  = the abundance of the kth food 
n = the number of different foods. 

The maximum feeding rate (u,,,,,) is not subscripted 
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with respect to food, but it could be so subscripted 
if the sit~lation warranted it. 

Rearranging eq. ( 1 ) for cornp~ltational conve- 
nience (details in appendix). 

Equations (1 )  and ( 2 )  state that the feeding capacity 
of a predator becomes saturated as increasingly more 
searching time is lost to processing food at higher 
rates of food consunlption. Equation ( 2 )  provides a 
comp~~tat ionallink between the ~ r and, ~ food abun- 
dances N,. However, it is the u , , ,  whatever their 
origin, that are of conscquence to the optin1iz;~tioil 
process. If eq. ( 2 )  does nct apply to a particular 
situation, the 11,~can be obtained by whatever means 
are appropriate. and the optimiration equation de-
rived below still applies. 

As a predator can allocate different proportions 
of its time to different search modes, the total quan- 
tity ( Y , )  of food k consunled is 

m 

Y, =11 c , i  x i  ( 3 )  
i-1 

where xi = 	the proportion of total feeding time spent 
in the ith search mode. 

The emphasis or effort (.r,) placed on diferent search 
modes may have dimensicns other than time, and 
search modes may merge into one another; but for 
the discussion to follow, it will be assumed that 
search modes are discrete and that the effort placed 
upon them may be expressed in terms of time. Equa- 
tion ( 3 )  applies to average feeding over a period 
like a day and asserts no details about fluctuations 
within that period. 

Control view, 

Let us suppose that the predator "controls" its 
feeding, to minimize the discrepancy (F) between 
desired and actual consun~ptions of various foods: 

I; = (zr - C
n 

Y,)' + 
,-1 

n 

z - Y , , - . , , , , ,  ( 4 )  
h - 1  

where z ,  = the desired level of consumption of 
food k 

zT = the desired level of total consumption 
(normally much less than ~r,,,:,,) 

r = the importance attached to consump-
tion of food k relative to quantity of 
the diet (i.e., the strength with which 
consumption (Y,O is regulated at z , )  

w, = the importance attached to nonfeeding 
activities relative to quantity of the 
diet 

x , + ~  = 	the proportion of time availab!e for 
feeding Lthich is spent instead on com- 
peting. nonfeeding activities. 

The first term of eq. ( 4 )  represents the discrepancy 
in total food consumption, the midd!e terms repre-
sent discrepancies in the consunlption of each fcod. 
and the last term represents the deviation of the ac-
t~ la l  time spent on nonfeeding activities from a dc-
sired proportion of unity. 

Although thc parameters ,and re, are assumed to 
be constant regardless of food abundance. they may 
change slowly with time as the physiological state of 
the predator changes due, for example. to .1,ce or sca- 
sonal change in its environment. 

Re\vcircl vie re, 

An alternative. but exactly equivalent phrasing of 
eq. ( 4 ) , may prove more satisfying to those preferring 
a more mechanistic interpretation of predation. The 
negative of eq. (4 )  is a "reward" ( G ) for the pred- 
ator to maximize: 

The positive terms represent rewards, respectively, 
from total food consunlption, from each food in it- 
self, and from nonfeeding activities. For  example, 
the reward from each food is 2 r e , , ; z ,  per unit con-
sumption at law consumption, but with a diminishing 
reward from additional increments of food. reach-
ing a maximum reward as at z,,-: that is, food is more 
precious to a hungry predator than to a satiated one. 

The tern1 in eq. ( l a )  whlch includes s,,,,, can be 
pxaphrased 

and considered a cost of feeding effort which is in- 
creasingly great as more effort is removed from com- 
peting. nonfeeding activities. 

K represents terms from eq. ( 4 )  which do not 
contain the decision variable ( x , )  and are therefore 
of no consequence to the optin~ization: 

n 

K = z2T + C wll- + \r',, . ,- 1 

Re~,ie\r$of cissur~7priorzs 

Equations ( I ) ,  ( 3 ) .  and (4 )  state the assunlptions 
underlying the predation equaticn. Eq~lation (1 ) is 
the "disc equation" of Holling (1959) adapted to 
a multifood situation. Eqi~a t 'on  ( 3 )  assumes different 
search modes exist. 
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Equation ( 4 )  o r  ( 4 a )  includes numerous biolog-
ical assumptions, some of them implicit. 

a )  	T h e  predator has  the ability to make an  optimal 
decision in distributing its effort among search 
modes.  

b )  	There  is in reality some desired level of consump- 
tion (:,) for  each food. 

c )  	The  discrepancy ( F )between actual and desired 
levels of food consumptions is minimized. (AI-
ternatively, the total reward ( C ) f rom consunip- 
tion of all foods is maximized.)  

d )  	T h e  relative importances (w,,)attached to dis-
crepancies ( o r  rewards) due to consun~pt ion of 
each food, total consumption, and nonfeeding 
are constant,  regardless of food abundance5 or  
levels of consumption. 

e )  	T h e  perceived discrcpancics are quadratic func- 
tions of ac t~ ia l  discrepancies. (Perceived rewards 
are  quadratic functions of consumption.)  

f )  	The  contributions of each food. total consump-
tion. and nonfeeding activity to the total iliicrep- 
ance (o r  reward)  are separate and lidditive. 

T h e  existence of search modes is illustrated by 
birds which feed in a variety of vegetation types and 
employ a variety of foraging techniques each day 
(Root  1 9 6 7 ) .  Dawkins ( 1969)  has  explored the 
mechanisms by which chickens maintain a variety 
of choices in their pecking behavior. Tha t  animals 
are capable of minimization "decisions" is illustrated 
by lobsters which orient their bodies by minimizing 
the discharge rate f rom their statocyst organs (Cohen 
1955) .  

T h e  notion of a desired level of consumption (z,) 
for  each food may seem artificial: however, the fact 
that animals are observed to take foods in fixed pro- 
portions when the foods are all superabundant sug- 
gests the existence of z , , . Brown ( 1 9 6 9 )  observed this 
in seed selection by pigeons. and Lat  ( 1967)  revie\ved 
the consistent food preferences of laboratory rats 
which lead to  a nutritionally balanced dict. 

A feature of eq.  (4 )  which indeed is arbitrary is 
that the "perceived" nutritional er ror  is the square 
of actual error.  I t  is reasonable to suppo5e that some 
exponent is appropriate b e c a u s  percei\cd differences 
have been shown generally to be a power function of 
actu:~l differences (Weber 's  1 -aw) .  E.r:tmp!cs (Stevens 
1966)  range f rom h u n ~ a n  and animal discrimination 
of pitch. loudness. and brightness to human attitudes. 
T h e  exponent is less than one in most cases (often 
about one-hal f ) ,  but some quantities are perceived 
with an  exponent greater than one (e.9. .  1.5 for  the 
exponent of perceived electric cu r ren t ) .  

T h e  assumption of additivity is also arbitrary. 
However,  studies on body orientation have shown 
that sensory signals f rom different organs may be  
treated as an  algebraic sum.  Pigeons evaluate head 

position in this way f rom separate sensors in the head 
and neck (Mittelstaedt 1 9 6 4 ) .  and fish add the cues 
f rom dorsal light and f rom gravity in orienting their 
bodies (Hols t  1950) .  

T o  summarize.  the mechanisms of feeding behavior 
are not known well enough to ~ a l i d a t e  completely 
the above assumptions, but similar ahilitics and sim- 
ilar relationships have been observed in other kinds 
of behavior. Fur ther  experimental observ, t '  '1 Ion must 
determine how well they apply to predation. 

T h e  predation equation may,  however. provide an 
adequate description of predator response to food 
abundance, even under  circumstances whcre it is not 
strictly correct as an  explanation. F o r  example,  a 
predator may  not literally possess desired levels of 
food consumption, but its response pattern may  be as 
though that were  the case. 

Substituting ( 3 )  in ( 4 ) .  the formal optimization 
problem is to minimize: 

subject to constraints on the "decision variables" u ,  
m + l
C 	r , = l  ( 6 a )  

i=l  

x ,  2~0 i 1  .  1  1 ( 6 b )  

T h e  equality constraint ( 6 a )  specifies that  the 
predator has a limited amoun t  of effort available for 
feeding. The  inequalities ( 6 b )  specify the physical 
constraint that effort o r  t ime cannot be negative. 

Eq~ ia t ion  ( 5 )  and constraints ( 6 )  represent a qua-  
dratic programming problem. and the q ~ i , ~ d r a t i c  form 
of eq.  ( 5 )  is in fact  critical to the relatively simp!e 
solution outlined below. If eq .  ( 5 )  should have a 
more  complex form. as may be demanded by reality 
~ l n d e r  some circumstances, it might be necessary to 
resort to a numerical, "steepest descent" search t -ch-  
nique of the sort described by Nelder and Mead 
( 1 9 6 5 ) .  Although search techniques can deal with 
any arbitrary function to be minimitcd. the) are 
expensive in computer  time and not feasible with 
more  than five o r  so decision variables. hloreover,  a 
complicated function could have numerous  minima. 
which would not only present c o r n p ~ ~ t i n g  problen~s .  
but could also prove confusing to a r e d  predator. 

A quadratic programming problem may be solved 
by  the method of Wolfe ( 1 9 5 9 ) .  an  extension of 
linear programming, if one  already has a computer 
program for  the relatively lengthy and complicated 
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procedure. Presented below is an ad hoc solution 
to the pr-oblern, which leads to the relatively simple 
computer program in Fig. I .  The solution proceeds 
in t h o  stages. First. 1-agrange multipliers are used 
to minimize eq. ( 5 ) ,  subject to equality constraint 
( 6 a ) .  Second, in the next 5ection. the inequality con- 
s t ra~nt \  ( 6 b )  are handled by setting some of the .ri 
to zero. 

The problenl is treated below in algebraic terms 
because algebra allows precise conlputational state-
ments ~ + h i c h  are general for any number of decision 
variables ( i.e.. search modes) .  Although a geometric 
treatment of the problem is limited to three dimen- 
sions. it can add to an intuitive ~lnderstanding of the 
algebra and procedures presented below. A geometric 
picture is not developed here. but the reader may 
find a diagram of a q~ladratic function like eq. ( 5 )  
and constraint\ like ( 6 )  in Kunzi and Krelle ( 1966: 
8 7 ) .  

Lagrange multipliers are a classical optinlization 
method which cannot deal practically with compli-
cated functions o r  inequality constraints. but they are 
fully effective for eq. (5 )  and ( 6 a ) .  They have the 
advantage that they lead to a general. algebraic solu- 
tion which applies for all possible parameter values. 
Applying Lagrange multipliers (Hillier and Lieber-
man 1967: 605) .  the values of x, which minimize 
eq. ( 5 ) .  subject to eq~lality constraint (6a) .  must 
satisfy the following equations: 

(Note that the ? F / ; x ,  are also all equal to each other.) 
E q ~ ~ a t i o n s( 6 a )  and ( 7 )  form the basis for the 

predation equation. Equation ( 7 )  states that F is 
minimized when the increment in F induced by a 
small shift in effort from nonfeeding to a particular 
search mode is exactly compensated by the decre-
ment in F due to increased food consumption. (Sim- 
ilarly, a change in F due to shifting effort from one 
search mode is exactly conlpensated by the effort 
shifted to another search mode.) 

Predators d o  not have Lagrange nlultipliers at their 
disposal. but animals are remarkably able at bringing 
perceived quantities into balance. This is what eq. 
( 7 )  says they can do. and it does not seem to require 
super powers. For  example. Mittelstaedt (1964) 
showed that head orientation in pigeons is achieved 
by balancing signals from receptor organs. Fraenkel 
and Gunn ( 1961 ) have reviewed numerous instances 
of tropotaxis (p.  7 6 8 9 )  and dorsal light reaction 
(p. 120-132) in invertebrates and fish. where the 
body is oriented by simultaneously balancing light 
intensity on bilateral light receptors. 

Cot)zputcltior~ 

.I.he reader who is not concerned w i t h  computa-
tional details may wish to skip this section and the 
follouing one on nonnegativity constraints. All com-
pi~tational procedures from the two sections are in-
cluded in the computer program (Fig. 1 ) .  

E q ~ ~ a t i o n( 5 )  may be rephrased: 

where q , =( 5 l l , , i )  ( 11. -1 1. I ; . A , )  

Examination of the matrix Q over numerous ran-
dom ~ a l u e s  for the I [ , ,  and kt', has shown Q is almost 
always pos~tive definite by the criterion of positive 
determinants outlined by Kunzi and Krelle (1966: 
35).  This means (Kunzi and Krelle 1966: 38) that 
eq~lation (8)  has a single minimum which is the min- 
imum for all decision variables x,, a well-defined 
optimization problem. 

The partial derivatives of ( 8 )  are 

Substituting (10)  in (7 )  and dividing by two yields 
171 equations: 

n l + l  

E nipl= b i  i = 1 , .  . . , nl (1  1 )  
j=1 

These nl equations are to  be solved simultaneously 
with the equality constraint from eq. (6a)  : 

where a,,+,,, = bIn+l= 1 . (12a)  

In matrix notation. eq. (1  1 )  and (13)  are 

where A is an ( m+ 1) X (tn + 1 )  matrix whose 
elements are a j j  
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x is :in (111 + I )  :: 1 \ector whose clenients 
are .u, 

b is an (111 + I )  x 1 vector whose elements 
are h, .  

Solving for X. 

x = ( A )  ' b  

Substituting ( 1 5 )  in ( 3 )  and expressing in matrix 
form. 

Y = u ( A ) ] b  ( 1 6 )  

hhere Y is an r l  x 1 vector \\hose elements are Y ,  
u is an n x (rn + 1 )  matrix whose elements 

are I ( , , ,  (h i th  l r l,,,,, . = 0). 

E q ~ ~ a t i o n  .'The ob- ( 16) is the predation e q ~ ~ a t i o n .  
jective is to compute the Y , ,  given parameters ,v,, 
kt.,,. :,,, z,, I.,,, and r r ,,,,,, and the "independent vari-
ables" N , .  The computational procedure is to calcu- 
late in the following order: 

a )  the i l l  uslng eq ( 2 ) .  
b )  the (I, and ( from eq ( 9 ) ,  
c )  the a, and h ,  from eq (12)  and (12a) ,  
d )  the I ,  ' ~ n dY from eq (15)  and (16)  

Conlputation of eq. (1 6) is straightforw3rd and 
simple. no matter how many foods there may be. It 
is simply a matter of niatrix inversion and matrix 
multiplication, operations routinely available on all 
computers. Experience has shown matrix A to be 
well-conditioned in the sense described by Conte 
( 1965: Sec. 5.4) ; it is therefore susceptible to inver- 
sion with reasonable precision. One circun~stance in 
which A may be ill-conditioned is when two search 
modes have 1 1 , ~so similar that they are not really 
distinct search modes. 

There is one complication however-that eq. ( 15) 
can generate negative x,, which violate constraint 
( 6 b ) .  This means some of the x, must be set to zero 
and treated in eq. ( 1 5 )  as though they do not exist. 
That is, under some regimes of food abundances the 
predator may not utilize some search modes at all. 
The computational problem is to decide which xi 
should be set to zero and which should be positive 
(i.e., included in eq. ( 1 5 ) ) .  

The procedure presented below resembles that of 
Theil and Van de Panne (1961).  It depends upon 
two conditions of the optimal solution: a )  all x, are 
nonnegative; b )  an x, equals zero only if its partial 
derivative, eq. (10) .  at the solution is larger (less 
negative) than the partial derivatives of the positive 
x,. The first condition deals with the error of includ- 
ing an x, in eq. (15)  when it should be set to zero. 
The second condition deals with the opposite error of 
setting an x, to zero when it should be positive. 

The \econd cond~tion deser\es further exp1;ination. 
The partial derivatives 3Fl; ix i ,  eq. (10) .  of all the 
nonzero .u, generated from eq. ( 1 5 )  are all equal to 
each other at a solution. Equation ( 1 5 )  simply im-
plements eq. ( 7 ) , which specifies that the derivatives 
are all equal. However, the derivatives of the zero 
.r, at the solution are not eq~ial  to the derivatives of 
the nonzero x,, because the zero .r, were not included 
in eq. (15) .  If the derivative ;iF/Ex, of any zero x i  
is more negative than the derivatives of the nonzero 
x , ,  then F \ \ i l l  be decreased by shifting some effort 
to that x i  (making it positive), and it should be in- 
cluded in the solution of eq. ( 1  5 ) .  Conversely. if  the 
derivative of a zero .x, is less negative than the de- 
rivatives of the nonzero .x,, then it is correctly set to 
zero. 

The basic procedure is to start with an initial 
g~iess of which x, should be zero and which should 
be positive. The zero x, are removed from eq. (15)  
by deleting their rows and columns from the niatrix 
A and deleting their elements from the vector b. (If 
x,, is set to zero. the a,, and b, , eq. ( 1 2 ) ,  must be re- 
defined with one of the q , ,  and c ,  as negative terms 
in place of the q,,, +, , and c,,,+ ,.) Equation ( 15)  is 
then solved. If the resulting x i  satisfy both conditions 
of the optimal solution, the problem is solved, and 
the Y ,  may be conlputed from eq. (16) .  

If either or both of the conditions are not satisfied, 
then the status of x ,  violating the conditions must be 
changed. Any nonzero x i  which are negative must be 
set to zero by deleting their elements from A and b 
before the next solution of eq. ( 1 5 ) .  Any zero x i  
whose derivatives are more negative than those of the 
nonzero x, must be returned to eq. (15)  by adding 
their elements to A and b before the next solution. 
This process of solving eq. ( 1 5 ) .  checking for the 
two conditions of optimality, and setting x i  to zero 
or returning them to the solution is repeated until the 
two conditions are satisfied. 

It is conceivable that a particular x, may be set 
to zero and then restored to positive status before the 
optimal solution is reached, o r  vice versa. However. 
experience has shown there is never a problem of 
oscillation without reaching the optimal solution, and 
in fact the procedure has always converged rapidly 
to the optimum within a few steps, regardless of the 
initial guess. 

In some situations the initial guess of which x i  
should be zero and which should be positive may be 
a good one. For  example. the values of x i  obtained 
from the previous step in a computer simulation or 
in the previous step of computing a response curve 
may provide the information. Computation is shorter 
if the initial guess is correct because solution of eq. 
(15)  need not be repeated. 

In  some situations there may be no information 
for the initial guess. Experience has shown that as-
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signing a positive value to all x,  in the initial guess 
results in rapid convergence to the solution. This  is 
facilitated by the fac t  that eq.  ( 1 5 )  never generates 
negative x,  which should be  positive in the optinlcil 
solution, provided the elimination process starts with 
all x, included in cq.  ( 1 5 ) .  

P A R ~ M E T ~ R  I-IOUEs~lh14 

If cq.  ( 1 6 )  is to be verified e\perimcntally.  
its paranicters must be susceptible to measurenlent. 
This  is easiest when the t ime ( x , )  ~ ~ l l o c a t e dto a 
particular search mode or  the quantity' ( Y k ) of a 
par t icular  food consunled is to one of 
parameters.  It is a matter of  devi5ing situations in 
which all parameters but  one arc o f  negligible effect. 

F o r  	e ~ a n i p l c ,( I , , , ; , ,  is the rate o f  consumption in 
a short  period when the predator is hungry and fooii 
is in 	superabundance. T h e  I . , ,  may be niea\ured as 
thc discovery rate when there is only food X and the 
predator is h ~ ~ n g r y  and searching at  n i a \ im~ln l  cRec- 
tivencss. Alternativel!,, the [ A , , ,  may be measured as 
the q~lantit ies of dilrerent foods uh ich  arc consumed 
under a particular regime of  food ab~ lndances  when 
the predator is in search mode i .  All this s ~ ~ p p o s c s  

c C O ~ M P U T EA A N D  B F t I O l l  E 4 U A T I O ; I  ( 1 2 )  A : I ~  ( 1 2 A ) .  
DO 1 0 8  1 = 1 ,  1 : A X  
B ( I )  = B ( I ) - B ( N I )  
0 0  1 0 8  J = l , N I  

1 0 8  A ( I , J )  = A ( I , J ) - A ( ; l I , J )  

LIO 1 0 9  J = l , t i l  


1 0 9  A ( N I ,  J )  = 1. 

B ( N I )  = 1. 


c C O ~ I P U T E x FRO:^ EQUI~TIOII ( 1 5 ) .  
C A L L  I : I V R T ( A , N I  ) 
C A L L  t ~ I U L T ( A , R , X X , I l I , I l I , l )  
L = O  
N I  = 0 
DO 1 1 3  1:1,111 
I F ( X (  1 ) ) 1 1 3 , 1 1 3 , 1 1 0  


'lo 

" Ix (  I )  = =
t"'l XX( : I I )  

1 1 3  	 C O i l T  I H U C  
C CO! ' ,PUTE D E R I V A T I V E S  F i :O ' l  E ( ] I J A T l O l I  ( 1 1 ) .  

C A L L  HULT(QrX,2FUX, : I1 , ' I1 ,1)  
DO 1 1 5  1 = 1 , ' 1 1  
D F D X ( I )  - 2 F D I ( I ) - C ( I )  
l F ~ X ~ l ~ ~ 1 1 5 , 1 1 5 , 1 1 4  


1 1 4  D E R  = d F D X (  I )  

1 1 5  C O 1 I T I : I d E  


0 0  1 1 8  1 = 1 , \ ! 1  
I F ( X ( 1 ) ) 1 2 0 , 1 1 G , 1 1 8  

C C I I E C K  Z E , < O  X ( I )  F98<  L l E l l l V A T l V E S  ' I O R E  
c l l E G A ~ I V E  TIIA'Ip ~ 1 Ts 1 V E  X (  I ) .  

1 1 6  I F ( L I F a X (  1 ) - ~ E I : ) 1 1 7 , 1 1 3 , 1 1 Z  
C 8IETU;I:i T O  C O ' I P U T A T  I O N S  A N Y  X (  l ) I : I C O P R E C T L Y  
c S E T  T O  Z E R O  1 ' 1  T I IE I P I I T I A L  G U E S S .  

1 1 7  	 X (  I )  = 1. 
L = 1 
G O  T O  1 1 s  

S E T  liEGATIVE X ( I )  T o  z E z O .  
1 2 0  X ( I )  = t i .  

~ = lthat  the dilTerent search modes c,in be distinguished 
observationally and induced experimentally. 

The re  are numerous ways to measure I,,and it,,, 

S U B R O U T I I I E  F E E D ( l I , M , X I i , V , U M A X , t I , W O , Z , Z T , X , Y  
2 l t 4 E N S l O l l  X t 4 ( l ) , V ( 5 , 5 ) , N ( l ) , Z ( l ) , X ( l ) , Y ( l )  
D I l 4 E N S l O ! i  Q ( 6 . G ) . A ( 6 . 6 ) . U ( G . 6 )  

M 1  = M + l  

DO 2 1 = I , ; . {  


C I i J I T  I A L  I Z E  SUM,b IAT IOIJS .  

S U I I U K (  I ) = 0 .  

C ( I )  = 0 .  

D E N O t \  = 0 .  


C C 0 : I P U T E  U FRO11 E U l J A T l O N  ( 2 ) .  

DO 1 K P = l , N  


1 	 DENOI'I = D E N O I I I + V ( K P ,  I ) * X I i ( K P )  

D E l l O M  = UMAX+DEtIO!, I  

DO 2 K = l , l j  

U ( K , : . l l )  = 0 .  


2  U ( K ,  I )  = U t l A X * V ( K ,  I  ) * X f i ( K ) / D E I I O Y  

DO 5 I = l , M  


C CO: IPUTE Q A N D  C FRO11 E Q U A T I O N  ( r ) ) .  

Q ( 1 4 1 . 1 )  = 0 .  


Q ( 1 , J )  = S U t l U K (  I  ) + S U : I U K ( J )  
DO 4 K = l , l l  


4 Q ( 1 . J )  = Q ( l , J ) + I . I ( K ) * U ( K , I ) * U ( K , J )  

5 Q ( J , I )  = Q ( I , J )  


Q(141,141) = \ I 0  

C ( t .41 )  = 810 


1 0 4  N I  = 0 

C E L I W N A T E  Z E R O  X ( I )  FRO14 A A i d 3  8. 


DO 1 0 7  I = l , M l  

I F ( X (  I )  ) 1 0 7 , 1 0 7 , 1 0 5  


1 0 5  	 N I  = t J I + l  

B ( N I )  = C ( I )  

N J  = 0 


A ( N I , N J )  = Q ( I , J )  

1 0 7  C D I i T  l N U E  


I M A X  = N I - 1  


1 1 8  C O l i T  l I l U E  
I F ( L ) 1 1 9 , 1 1 9 , 1 0 4  

c C O : ~ P U T E  Y F R ~ I I , ~ E Q U A T  I O : ~  ( 1 6 ) .  
1 1 9  	 C A L L  i l U L T ( U , X , Y , N , b I l ,  1) 


R E T U R N  

E N D  


FIG.  1. The con1pu:er program used for solving eq. 
(15)  and (16)  subject to constraints ( 6 a )  and ( 6 b ) .  
The argument list of the computer program is (11, ,?I, 

l i  ~t,,, \ I , , , ,  z,<, : T ,  .r,, Yit). The first I0 argu- 
ments are input to the subroutine and the last two argu- 
ments are output. Note that .r, ( i  = 1, rn + 1 )  is both 
input (each s,set to either zero or any positive value, as 
an initial guess) and output. A duplicate of the first di- 
mension statement must appear in the calling program, 
with dimensions set at rl  or larger ( t t l  + 1 ,  in the case of 
x ) .  The dimensions in the second and third dimension 
statements must be at least rn + 1. Thc user must supply 
t\so subroutines for matrix operations. Subroutine INVRT 
( A , rl,) inverts matrix A of dimension rl,,. Subroutine 
h lULT ( A ,  B, P, rl,, ?I,, n:,) multiples matrix A of dimen- 
sions rz, x t l ,  by matrix B of dimensions rl, x n, to yield 
matrix P. The reader may verify for himself that the 
values of Y ,  generated by this program are in fact op- 
timal. If all primary determinants of the matrix Q are 
positive, then F in eq. ( 4 )  has only one minimum (Kunzi 
and Krelle 1966: 35-38). Whether the solution Y, is at  
that minimum can be ascertained by computing the value 
of F in the neighborhood of the solution in order to see 
if any and all deviations from the solution cause F to 
become larger than at the solution. First compute F 
from eq. ( 4 ) ,  based on the solution values of Y,, and 
then recompute F from values of Y, based on x i  adja-
cent to the solution values of .Y, (subject to the con-
straints that the x i must be nonnegative and sum to one).  

in this fashion. F o r  example,  z ,  is the quantity of the  
kth food which is consumed when there is n o  com- 
petition with desired consumption of any other food, 
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with total consumption, o r  with nonfeeding activity. 
This  pertains when the kth food is present in super- 
abundance ( thereby requiring negligible tinie for its 
consun~pt ion and removing competition with non-
feeding activity) and with an  alternate. \taple foot1 in 
superabundance. ( A  staple food is con\ideretl here 
to have its consumption loosely controlled, i.c.. I(,,, 

is small, and fills the gap between desired conjllmp- 
tion of the test food z ,  and total consumption :,.) 

The  par'lnieter :,. may be nleasured s ~ p a r ~ ~ t e l y  as the 
quantity of  staple food consumed when b). itself in 
superabundance. 

T h e  weighting factor w , is the strength with which 
the Xth food is controlled a t  its desircd consuniption. 
despite competing demands fo r  the predator's effort. 
Competit ion with nonfeeding activity is eliminated by 
having the kth food alone and in superabund,~nce.  
Solving eq.  ( 1 5 )  for this situation (derivation in 
appendix) ,  

T h e  value of M,, is indicated by where food consump- 
tion (Y,)  falls i n  the  interval f rom 2, t o  zT. If w,< 
is small (relative to  the unity importance of total 
food consumption) ,  consumption is near :,.;if w, is 
large, consumption is near z , .  Since all I+$,will usually 

F O O D  A B U N D A N C E  ( N 1 )  

FIG. 2. Feeding rate proportional to food abundance 
until saturation: n = 1, vl = 1.2, ~r , , ,  = a3, ti'o = 0, 
zl = 1. Effort and food abundance in all figures have a 
full scale of unity. 

be much less than unity. it may not be feasible with 
eq .  ( 1 7 )  to nieajure the w,, with s~~ l f i c i en t  precision 
to assign them values relative to each other .  I t  there-
fore may be approprixte to measure one or  two it,,; 

as above to ascertain their appro\iniate magnitude. 
and then devise a test with foods in competition two 
at a tinie to determine the relative m a g n i t ~ ~ i l e s  of the  
It'/, . 

T h e  weight i t , ,, n1dy be measured f rom the time 
bu~ lge t ( . r , )  when there is only a sm,~ll  quantity of 
staple food (derivation in appendix) : 

T h e  properties of the predation eq l~a t ion  will now 
be illustrated with a simplified version which retains 
the features of the general equation, ~ l s i n e  as few 
parameters as possible. T h e  following simplifications 
have been applied to eq .  ( 1 6 ) :  

a )  There  is one search mode for each food: i.e., 
r n  = 11 and all I ( / , ,  and I., , ,  a re  zero for k not 
equal to i. 

b )  T h e  total q~ lan t i ty  of food desired is the 5 ~ 1 m  
of the desired quantities of each food,  i.e.. 

FOOD A B U N D A N C E  (N,) 

FIG. 3. Hyperbolic feeding response: n = 1, v ,  = 2, 

u,,,, = 2.75, w7, = 500, z ,  = 1. The data points are 
for mantises feeding upon flies (Holling 1966). (The 
fitted curve is slightly sigmoid; the thin lines show the 
distribution of effort in a pure hyperbolic response.) 
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a 

A B U N D A N C E  A B U N D A N C E  

OF V A R I A B L E  FOOD (N,) O F  V A R I A B L E  F O O D  ( N ~ )  

FIG. 4. Sigmoid feeding response: n = 2, v, = 12, FIG. 5. Signloid feeding response with threshold and 
v,h', = 10, ~r ,,,,,, = 1.1, w ,  = .8, n,,, = ,008, z ,  = .92, variety maintained in the diet: n = 2, I,, = 1.6, \lL'NS;,= .08. The data points are for deer mice feeding upon = .5 u,,,, = cr;, w l  = ,005, w,, = .01, Z,  = .5, Z 2  = .5. 
sawfly larvae uith dog biscuits in superabundance as al-
ternate food (Holling 1965). The alternate food in all tively, w,,may be large enough that less effort is put 
figures is constant in abundance. into feeding as satiation is approached, more effort 

being placed into con~peting,nonfceding activities. 
n 

ZT = C Z k  . (19)  (Nonfeeding activity may be passive, as with the 
I,  =1 mantis (Holling 1966),  which does nothing when it 

c )  The importance coefficients (,,$,) have the is satiated.) Both effects are present in Fig. 3. 
same value for all foods. A sigmoid response (Fig. 4 )  is characteristic of 

predators which, when food abundances change, shift 
The parameters of  this special case are w ~ .w , ~ %their emphases upon different foods competing for  

Z t ,  i,,,,,( k  = 1 ,  . . . , n ) .  and u,,,,,. The curves dis- their attention. In the typical response, no effort is 
cussed below were generated with the computer pro- put i n t o  a particular food when its abundance is 
gram given in Fig. 1 .  below a threshold; i.e., it is not worth the effort. 

The predation equation can generate predat-r re- Murdoch (1969) observed thresholds experimentally 
sponse curves with a11 the shapes reported in the i n  predatory snails feeding upon mussels and bar-
literature. For  example, a straight line to saturation nac les ,  ~b~~~ the threshold, the effort directed to-
(Fig. 2 )  is expected when the maximum processing ward a particular food increases with its abundance, 
rate ( l d , , , t t , )  is much larger than desired feeding rate as pursuit of  that food brings increasing rewards. 
( z T )  and nonfeeding activities d o  not C0mP:te with Effort finally declines at high abundances as less 
feeding ( i .e . ,  w,, is small). This results in a total effort suffices to satisfy food requirements. The sig-
effort being placed into feeding until the full feeding maid can be very strong. as in Fig, 5, or it can be 
requirement is met. weaker, as in Fig. 4. Variety may persist in the diet, 

Another kind of predator response is the hyper- even when one food is much more abundant than the 
bolic curve (Fig. 3 ) ,  which is well documented in a other (Fig, 5 ) .  The sigmoid response in Fig. 4 and 
variety of circumstances (Morris 1963, Mook and 5 is a consequence of competition between two foods 
Davis 1966).  For  example, I ( , , , , , ,  may be only slightly for the predator's effort. but a sigmoid can also be 
larger than z r ,  in which case the hyperbolic character generated by competition between feeding and non-
of eq. ( 1 )  dominates the feeding response. Alterna- feeding activities. 
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A B U N D A N C E  

O F  V A R I A B L E  FOOD ( N , )  

FIG.6. Feeding response with peak feeding at interme- 
diate abundance: n = 2, v, = 4, v2N2= . 5 ,  11 = m, 
nrl = ,001, H ' ~= .06, = 0. T,, = 1. The alternate food 
is preferred, but it is not availa6le in sufficient abundarce 
to satisfy the predator's total food demand (+).  

T h e  curves in Fig.  3 and 4 are  not the best possible 
fits of cq.  ( 1 6 )  to the data ,  and different parameter 
values could generate similar curves. T h e  fit does not 
prove the  validity of the optimization equation be-
cause an  entirely different equation could conceivably 
fit the data  cqually well. Wha t  the fit does show is 
that the optimization equation is a t  least compatible 
with patterns of predator response observed in the 
real world. 

Under  some circumstances the pattern of first in- 
creasing and then decreasing effort as a foocl's abun- 
dance increases is so  pronounced that consumption 
of the food does not increase continuously toward a 
plateau as it becomes very abundant.  Instead. peak 
consumption of the food is at  an  intermediate abun- 
dance, and consumption declines as the food becomes 
more abundant.  This effect is most pronounced (F ig .  
6) when ( a )  the food is relatively unpalatable (i.e., 
its zk  is lower than for  o ther  foods) and ( b )  alterna- 
tive foods are present but not in sufficient abundancc 
to meet the total food demand ( i , . ) .T h e  type of 
predator response represented in Fig. 6 has not yet 
been reported in the literature, but it is reasonable to  
suppose it exists. 

I n  addition to  thresholds, there may be discon-

0. 


ABUNDANCE 

O F  V A R I A B L E  FOOD ( N , )  

FIG.7. Predator response similar to Fig. 6, but with 
discontinuities: n = 2, v ,  = 2.5, v,hl, = .5, I I , , , ~ , ~= 71, 

n,, = .01, n',, = .01, T1 = 0,  :? = 1. 

tinuities in the middle of a response curve (F ig .  7 ) ,  
as o ther  foods are  switched in o r  out  of the diet o r  
as nonfeeding activity is switched in o r  out.  W e  are  
not accustomed to  thinking of predator responses 
with discontinuities a s  in Fig.  7 ,  but  such disconti- 
nuities may  in fact be common.  

The idea of a preda!ion equation based on optin1iz:l-
tion arose during conversations in 1968 wi:h G. hlc-
Laughlin (Computing Devices of Canada Limited), sup- 
ported by the Canadi'ln Fore~ t ry  Scrxice. G .  Stewart and 
A. Bryan assisted with numerous tasks in deve'opi~g the 
equation. J. Bryan, R. Drent, C. Holling, J .  Krebs, and 
D. Rapport contribu:ed valuable sugge\ iors on the 
manuscript. 
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APPENDIX 

Derivation of rqualiorl (2) 

It is necessary to derive first the total food cOnsunlp-
tion ( v  I(,.) in a articular search mode i. From eq. ( 1), 

i; 

I lk ,<  

f = y [l,,L .V,: ( -----)I1 -
9 

Expanding and multiplying by u,,,,,, 

u,,,,,~X ukL= llnIas X vki N, - E uki Nk  ( z ilk,;) . 
k i, 

Noting that r vI A', (: ukSi )  = ( : , 1 4 ~ . ~ )  (: I,,, N ~ )  
k 

and that S 14,, = X u,.,, factoring X u,., and X u,, out , k' h' k 

o f  all terms in which they appear, and solving for \' uki ,  
k 

1 4 , , , , ~  2 L ' , ~  ,Vk 
X I d k L  = k 

(A-1) 
k Ulnas  + \' v k i  lVk ' 

k 

Substituting eq. (A-1) in eq. ( I ) ,  

14n,a, 

which yields eq. (2 )  upon expansion. 

Deri\.a!ion of equations (17) and (18) 

Assume only the kth food is present and only one 
search mode prevails in the experimental situation. From 
eq. ( 9 ) ,  

q l ,  = u',, + w, u',, 

9,' = 0 

q22 = cp = $cO 

c, = u,, (w, z ,  + ZT) . 
Substituting the above quantities in eq. (161, and solv- 

ing for x,, 

U,l (w, zh. $. zT)
X1 = 	 (A-2) 

w o +  (1  + $ v , )  u',, 
If ,I., = 0 (staple food),  then 

id, ,  Z T  
X1 = -

K,()+ l 1 Z k ,  . 
When I4,, is small (food scarce), 

I lk ,  ZT 
x 

1 - 1 ' 
which yields eq. (18) upon solving for n,,, 

Assume w k  + 0 and apply eq. (3 )  to (A-2) : 

(w, zk f zT) u',.,
Y -

" - n o +  (1  + wh.) 1 1 ' ~ ~' 

If u,, = cc (kth food superabundant), 

w, Z. + zT
Y ,  = 

l + l l ~ k  ' 
which yields eq. (17)  upon solving for w,. 


